Estimation and Forecasting of Dynamic Conditional Covariance: A Semiparametric Multivariate Model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation and Forecasting of Dynamic Conditional Covariance: A Semiparametric Multivariate Model

The existing parametric multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) model could hardly capture the nonlinearity and the non-normality, which are widely observed in …nancial data. We propose semiparametric conditional covariance (SCC) model to capture the information hidden in the standardized residuals and missed by the parametric MGARCH models. Our two-stage...

متن کامل

Estimation and Model Selection of Semiparametric Copula-Based Multivariate Dynamic Models Under Copula Misspecification∗

Recently Chen and Fan (2003a) introduced a new class of semiparametric copula-based multivariate dynamic (SCOMDY) models. A SCOMDY model specifies the conditional mean and the conditional variance of a multivariate time series parametrically (such as VAR, GARCH), but specifies the multivariate distribution of the standardized innovation semiparametrically as a parametric copula evaluated at non...

متن کامل

Semiparametric Multivariate GARCH Model∗

To capture the missed information in the standardized errors by parametric multivariate generalized autoregressive conditional heteroskedasticity (MV-GARCH) model, we propose a new semiparametric MV-GARCH (SM-GARCH) model. This SM-GARCH model is a twostep model: firstly estimating parametric MV-GARCH model, then using nonparametric skills to model the conditional covariance matrix of the standa...

متن کامل

Covariance Estimation for Multivariate Conditionally Gaussian Dynamic Linear Models

In multivariate time series, the estimation of the covariance matrix of the observation innovations plays an important role in forecasting as it enables the computation of the standardized forecast error vectors as well as it enables the computation of confidence bounds of the forecasts. We develop an on-line, non-iterative Bayesian algorithm for estimation and forecasting. It is empirically fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Business & Economic Statistics

سال: 2011

ISSN: 0735-0015,1537-2707

DOI: 10.1198/jbes.2009.07057